Plans and progress on M3D-C1 modeling with impurities

by

Brendan C. Lyons¹

with

Nathaniel M. Ferraro², Stephen C. Jardin²

¹General Atomics

²Princeton Plasma Physics Laboratory

CTTS Disruption Mitigation Call February 12, 2018

M3D-C1 has been coupled to KPRAD

- Continuity equations advanced for each charge state of impurities
- KPRAD calculates ionization, recombination, and radiation
- 2D nonlinear modeling of DIII-D shot 137611
 - Radiation leads to decrease in thermal energy
 - Timescale far too slow compared to Izzo PoP 2013

Equations in M3D-C1 being improved

- Currently impurities just advect and radiate power, but this misses important physics
- New single-fluid equations developed based on reduction from full multi-fluid model
- Implementation in M3D-C1 underway to capture important effects, including
 - Impurity contribution to total momentum
 - Increase in electron density as impurities ionize
 - Dilution cooling as impurity density increases

Future work

- 2D nonlinear benchmark with NIMROD
 - Use DIII-D 137611 with initial argon distribution
 - Compare radiative cooling to verify KPRAD coupling
- 3D nonlinear modeling of same discharge
- Explore impurity profile effects on thermal and current quench
- Couple to pellet ablation model for more sophisticated mitigation modeling

